
DecentraVote
Electronic Voting secured
by Blockchain
Version 1.0

WHITE PAPER

DR. ZOLTAN FAZEKAS

Blockchain Expert at iteratec

Contents

4 Governing Bodies and Regulations

4 Decentralized Voting

5 Choosing the Right Blockchain

7 Hosting the User Interface

7 Managing Members and Funds

8 Preserving Anonymity

9 Casting and Counting Votes

10 Enforcing Resolutions

11 About the Author

11 About iteratec

3

Digitization impacts all areas of an organization,

including its governance. Countries are successively

changing their legislation, allowing shareholders of

joint-stock companies, as well as members of

cooperatives and associations to attend in general

meetings by electronic means. They are thus able to

participate in all aspects of the decision making of their

respective governing bodies without the need of being

physically present. This whitepaper outlines our approach

to provide a tamper-proof solution for electronic voting

(e-voting) based on blockchain and cryptography1.

1 DecentraVote was designed for general meetings with thousands of members and resolutions with a value at stake which can be secured by the underlying blockchain network.

 Nationwide political elections and other high-risk decisions are not in the scope of DecentraVote.

Electronic voting

fosters participation in

general meetings.

As opposed to many other use cases, the benefits
of blockchain for e-voting have been recognized for
some time: censorship resistance, immutability and
verifiability of the votes combined with unforgeable
digital signatures of the voters and the timestamps
issued by the blockchain. These properties,
supplemented by smart contracts codifying the voting
rules, with a number of network nodes ensuring that
they are applied correctly, make blockchain technology
so appealing for this use case.

4

Governing Bodies

and Regulations

The general meeting, the highest governing body
of many organizations, needs to convene regularly
in order to make binding decisions. The higher the
number of members, the more difficult it gets to meet
at a single venue. For this reason, the general meeting
usually only convenes once a year. If members exceed
a certain number, only elected proxies are allowed
to attend. This implies, that members can no longer
exercise their voting rights directly. By using an
appropriate e-voting solution, organizations could
schedule general meetings anytime and enable their
members to cast votes remotely.

DecentraVote anticipates

and mitigates the risk of

internal abuse of power.

The general meeting co-exists with other statutory
bodies of an organization like the board of directors.
Their competencies and responsibilities are regulated
by the respective law applicable to the legal form in
the country of registration as well as the individual
statutes of the organization. To protect the interests of
the general meeting, we don’t rely on the chairperson
designated by the directors or other officials of the
organization to stick to the rules because of their legal
obligations and personal liability. Instead, we envisage
technical solutions that protect from abuse of power2.

2 We only assume that all actors are rational enough to avoid behavior with the certainty of negative consequences for them. We make sure that such behavior can’t go undetected.

3 Some organizations could also require their members’ ability to plausibly deny participation in an anonymous vote. To support that we would only need to replace the

 deterministic secrets used in DecentraVote by random secrets per anonymous vote and destroy them afterwards.

4 Polyas (https://www.polyas.com/) was certified in 2016 according to common criteria standards.

DecentraVote complies with

legal provisions and the

statutes of organizations.

The governance of individual organizations can vary
a great deal. Their statutes can define specific roles,
committees and rules such as a quorum and the
majority required for certain decisions. Because
of very different legal frameworks and individual
provisions in their statutes, organizations need a
customized e-voting solution. They can build it on
the generic framework of DecentraVote or use a
reference implementation tailored to their legal form
in the country they are registered in and extend it with
specific provisions of their statutes (see Figure 1).

Decentralized Voting

A secure e-voting system must ensure that only
members eligible to vote can participate. It needs to
guarantee that they can only cast one vote and can
verify that the vote was accepted and counted. It must
be able to protect against anybody tampering with the
votes cast or finding out who has cast which vote3. It
has to prevent the detection of interim results before
the vote ends and enable everyone to check the
outcome of the vote afterwards.

Centralized e-voting solutions are already available4
and are secure if operated accordingly. Voters can’t

statutes and
rules of procedure of

a registered cooperative

coorperatives act
germany

association act
germany

european stock
corporation

members, resolutions, votes

reference
implementations
specific to legal
form and country

custom extensions
for an organization

generic
framework

Figure 1: Modular construction of DecentraVote

5

fool the system and cast multiple votes, prevent other
voters from casting their vote or see the votes cast by
others. Nobody, except the staff of the service operator,
is able to interfere in the system. But what if they didn’t
set it up as intended and gained access to the voters’
credentials? Since voters don’t see what is happening
inside the system, they would have practically no
chance to notice manipulations. This is an inherent
risk of any system run by a single operator. Whoever
it is, it can’t be fully protected from internal fraud or
abuse.

Redundancy is the common way to solve problems
with a single point of failure, in our case, the service
operator. We can engage two or more independent
service operators running the e-voting system in
parallel and compare their respective outcomes.
In essence, this is the idea behind fault tolerant
distributed systems such as blockchains.

By using blockchain, the

need to trust the operator of

the solution, is superseded.

Decentralized e-voting solutions using blockchain5
are not based on the assumption of an honest service
operator. Instead of a single trusted entity they rely
on several independent service operators. They work
simultaneously but none of them can interfere in the
system without the consent of the others. Transparent
and immutable logs of every change to the data and to
the programs enable anyone to monitor the integrity
of the system.

5 The blockchain-based solution Polys (https://polys.me/) was announced to be made public in 2017.

6 Besides the Ethereum Mainnet there are several regional and industry specific consortia networks like Alastria (https://alastria.io), Energy Web Chain (https://energyweb.org) or

 bloxberg (https://bloxberg.org).

7 In order to manipulate the system 1/3 of them need to collude or be hacked.

8 The difficulty of obtaining the computing power (Proof of Work), cryptocurrency (Proof of Stake) or other resource that is needed to successfully attack the network determines

 its security.

Choosing the Right Blockchain

DecentraVote can be deployed on any Ethereum-based
blockchain network. Since the security of the solution
heavily relies on the underlying network, organizations
need to consider which one to use. There are a few
options to choose from6.

In permissioned blockchains the blocks are created
by authorized entities, the validators. Their identity is
public and their reputation is at stake. They mutually
control each other and exclude validators failing to
follow the rules. Several of them would have to be
involved in an attack to be successful7. This increases
the difficulty of an attack substantially, compared
to systems with a single service operator. The more
validators a network has, the more secure it can be
considered. Unfortunately, the number of validators in
a permissioned network is limited by the consensus
algorithms used.

The number of validators in a permissionless network
is practically unlimited. Their identity is unknown
since every user can create blocks without the need for
permission. This imposes the risk of Sybil attacks: it is
unclear if validators are controlled by a single actor or
represent different actors. To restrict the ability of any
actor to create a disproportionate number of blocks,
consensus algorithms based on limited resources
instead of the validators’ identity are used8. Acquiring
those resources within a short time is difficult, so the
attack would need to be prepared over a longer time
frame. Coordinating a collusion among participants,
who already own the resources necessary for the
attack, also involves a considerable risk. The attack
wouldn’t remain undiscovered forever. It would
damage the trust in the network and destroy the value
owned by each participant. This is the reason why they
rather protect the network by monitoring blocks and
discarding those which break the rules.

The blockchain network

determines the security,

scalability and costs of votes.

register of
members

vote &
member

mgmt
device

storage
& relay
service

blockchain
node

blockchain
node

blockchain
node

activation
& voting

device

anonymous account
registration flow

vote administration
and conduction flow

member account
activation flow active member account

store vote
content

and
configure

smart
contract

store membership claim

relay
anonymous

account
registration

request

authenticate and
provide

member account

read
configuration

store
secret
hash

fetch vote
content

store content
hash, read

configuration,
find account,

register
anonymous

account

cast vote
and get
results

Figure 2: Overview of DecentraVote components and their interdependencies

7

The downside of the high number of validators
in permissionless networks is the low number of
transactions confirmed within a given timeframe9.
This can be a bottleneck if a vote with thousands of
members needs to be completed within a few minutes.
In addition, the confirmation time of transactions
depends on the price paid. Setting the price low
will make the vote cheaper but would also take
substantially longer.

Hosting the User Interface

Members can participate in e-voting from anywhere
using their own device (see “Activation & Voting
Device” on Figure 2) connected to the Internet. They
need to install a DApp browser10 which provides a wallet
and an interface for connecting to the blockchain.

The user interface of DecentraVote is a single page
application running in the browser which interacts
with smart contracts deployed on the blockchain via
the RPC node (see “Blockchain Node” on Figure 2)
configured in the DApp browser11. We need to make
sure that the user interface hasn’t been manipulated
to display fake content of the resolutions or to alter
votes before they are signed and submitted to the
blockchain.

The user interface and all

information displayed are

tamper-proof as well.

DecentraVote contains a storage service (see “Storage
& Relay Service” on Figure 2) which hosts the files of
the user interface, the content of the resolutions as well
as membership claims and all other security-critical
software components and data which can’t be stored
on the blockchain. This storage service is provided by
the directors but could be operated by any member of
the organization as well12. The storage service responds
to requests containing a hash with the corresponding
data. Each request must be signed by an active member
account. This prevents non-members from accessing
confidential information of the organization. Instead

9 For the Ethereum Mainnet the current limit is about 20 transactions per second.

10 The most popular option is MetaMask (https://metamask.io/), which provides a mobile browser and an extension to existing desktop browsers as well.

11 Members can use publicly available RPC nodes of service providers like Infura (https://infura.io/) for free or run a node themselves.

12 Any member can start to provide a storage service after fetching the data from other running storage services for the hashes published on-chain.

of blindly trusting the service we use a script running
in the browser to check the integrity of its output.
The script verifies the user interface files loaded
from the storage service before they are executed.
This guarantees that the user interface hasn’t been
tampered with. Before displaying any data requested
from the storage service the script verifies those data
too. The script performing the verification is part of
the index.html file, which is the entry point of the user
interface. To verify the integrity of this file, members
can save it on their device, inspect its source code and
compare its hash with the one published in the smart
contract using a hash calculation tool available online
or on their operating system. The link to the index.html
file stored in their browser favorites includes an URL
parameter with the address of the smart contract of
their organization. Each time they open the link the
verification script fetches the hashes of the files of the
user interface from the smart contract and requests
the corresponding files from the storage service. It
computes the hash of each file locally and compares
it with the hash found in the smart contract. If equal,
an HTML element corresponding to the file is created.
A similar procedure is applied to values displayed by
the user interface which have been returned by the
storage service.

The storage service can’t fake the requested data
because their hash is available on-chain. However,
it could completely or selectively refuse to respond
and withhold the data depending on the requesting
member. To avoid this problem the storage service
must submit a transaction with the hash of the data
it is requested to persist. Thereby it acknowledges
the receipt and commits to ensure the availability of
that data. If it fails to do so, members can switch to
one of the alternative storage service providers listed
in the smart contract of their organization. To report
a non-responsive service provider, members must
submit their request on-chain. If the service provider
doesn’t respond within a specified number of blocks,
members can request its removal from the list of
available storage service providers.

Managing Members and Funds

Members are represented on-chain by the address of
an externally owned account, the member account. The
membership claim containing their name is persisted

8

by the storage service and is only accessible for
members. The member account and the membership
claim are tied together by the activation transaction.
Each member can only have one account active at
a time. In case of loss of their private key, members
can replace their old account with a new account
after renewed authentication. If their membership
terminates, their member account is deactivated on-
chain and their membership claim is deleted from
the storage service. Bodies of the organization like
the board of directors and registers of voters13 are
represented by lists of the corresponding member
accounts.

In order to get activated, members provide the address
of their blockchain account to a director along with
proper authentication and wait until they see that
address and the hash of their membership claim
appear in an activation transaction. Directors submit
transactions activating new and deactivating retired
and excluded member accounts (see “Vote & Member
Management Device” on Figure 2) in accordance with
the statutes of the organization.

Users in a register of

members can activate

their member accounts

themselves.

If members of an organization are already recorded in
a register of members maintained by the directors, the
register can help with the activation of those members
by acting as an oracle which testifies identity and
membership status14 (see “Register of Members” on
Figure 2). In this case, the members must authenticate
by logging into the register and providing the address
of their blockchain account for activation. The oracle
creates and sends the membership claim to the
storage service and submits a transaction with the
member’s address and the hash of the membership
claim to the blockchain to activate the member. The
activation can be accepted by the smart contract
immediately or become subject of a vote depending
on the statutes of the organization. Using the hash
submitted along with the activation transaction all

13 The register of voters can differ from the register of all members. If a resolution concerns concrete members, e.g. the discharge of the board of directors, these members aren’t

 eligible to vote.

14 We implemented an oracle using Keycloak (https://www.keycloak.org/) to integrate existing identity providers and maintain the mapping between members’ identity and their

 blockchain account.

15 Member accounts need funds for paying transaction fees.

16 The secret is the signature of the member’s blockchain address created with the member’s private key.

17 The private key of an anonymous account can be deterministically derived from the member’s secret and doesn’t need to be stored.

members can request the membership claim from the
storage service and get informed about the identity of
the new member.

When new member accounts have been activated,
the smart contract sends them some initial funds15.
If the balance of the member account falls below a
certain limit, members can request a refill from the
smart contract. Member accounts must not be used
for transactions unrelated to the organization, i.e.
members are not permitted to transfer funds to other
accounts or interact with smart contracts which
haven’t been deployed by their organization. The
organization can’t prevent that but can monitor their
transactions and terminate their membership if they
do so.

As soon as their member account has received funds,
members can submit their first transaction sending
the hash of a unique secret16 to the smart contract
which adds it to its internal list of potential voters.
Using this secret, members can prove that they are
included in the list of voters without disclosing their
identity.

Preserving Anonymity

Member accounts can only be used for open votes. In
order to maintain anonymity and unlinkability, voters
must register a new account17 each time they want
to cast an anonymous vote. These single-purpose
accounts are called anonymous accounts and can
only be used once to cast a vote. Since a newly created
anonymous account has a zero balance, it needs to be
topped up with a small amount of funds sufficient for
paying transaction fees for casting a vote. The top-up
is part of the registration of anonymous accounts.

Users register anonymous

accounts without

disclosing their identity.

9

The set of eligible voters may vary, either over time,
as new members enter or leave the organization, or
depending on the type of resolution put to the vote.
As a number of amendments to a resolution could
be proposed, members will need several anonymous
accounts to vote on each amendment using a different
account. Therefore, members belonging to the set of
voters register multiple anonymous accounts at once.
The registered accounts are consecutively numbered.
The anonymous accounts with the same number
together form a group of anonymous accounts. Each
time a vote with the same set of voters is conducted,
the next unused group of anonymous accounts is
allowed to participate18.

When registering an anonymous account, members
need to prove they belong to the respective set of
voters. Instead of disclosing their identity, they create
a non-interactive zero-knowledge proof called zk-
snark. The zk-snark is constructed as follows. From
all the hashes submitted during the activation of the
member accounts, we select those corresponding to
the respective set of voters. We construct a Merkle
tree of the selected hashes and compute a zk-snark
from the secret of the member and the Merkle proof
of its hash in the Merkle tree19. The zk-snark is sent to
a smart contract to prove that one of the leaves in the
Merkle tree corresponds to the secret of the member
without revealing which one it is. After verifying the
zk-snark, the smart contract registers the anonymous
account sent along with the zk-snark.

We must ensure that members can’t take part in a
vote using different accounts that are included in the
respective group of anonymous accounts. To prevent
them from registering more than one anonymous
account in a group using the same zk-snark, the zk-
snark contains a reference to the anonymous account.
To prevent them from doing the same using different
zk-snarks, each zk-snark is supplemented by a
nullifier. The nullifier is composed of the member’s
secret and the consecutive number of the group.
Since members have only one secret, they can only
create one nullifier per group. As the smart contract
knows all nullifiers that have been used for registering
anonymous accounts, it won’t accept them the second
time.

Members can’t submit the registration request for
their anonymous accounts from their regular member
accounts or other external accounts they own if

18 If the set of voters changes, already registered but unused anonymous accounts will be reused. In this case, the anonymous accounts do not need to be topped up again.

19 The Merkle root referenced in the zk-snark makes sure that the anonymous account is registered for the corresponding set of voters.

20 Members can use the Tor network to obfuscate their IP address when sending requests to the relay service.

21 GSN is general purpose and can’t rely on any assumptions about the smart contracts the transactions are relayed to. In order to protect from malicious smart contracts, the gas

 limit of relayed transactions is capped. Since on-chain verification of zk-snarks requires way more gas than allowed GNS is unsuitable for relaying top-up requests.

22 Escalation can be performed using regular member accounts after getting several requests rejected and waiting long enough to make it impossible to associate the rejected

 requests to the escalating member.

they want to preserve their anonymity. Therefore,
DecentraVote contains a relay service20 similar to
the Gas Station Network (GSN) which submits top-
up request on behalf of members (see “Storage &
Relay Service” on Figure 2). The service only relays
transactions to smart contracts deployed by the
organization21. In order to protect against spam, top-up
requests must contain the solution of a proof of work.
The relay service verifies it by hashing the solution
along with the zk-snark and comparing the hash to
the difficulty published on-chain. Before submitting
transactions, the relay service verifies the zk-snarks
locally to prevent transaction fees caused by incorrect
ones.

The relay service can’t replace the anonymous
account, which needs to be topped up, because its
address is part of the provided zk-snark which can’t
be re-created without knowing the member’s secret.
The only thing the relay service could do, is to withhold
top-up requests. A malicious service could relay
transactions of members it colluded with and reject
requests of all others. In this case, the discriminated
members submit escalation transactions22 to inform
each other and to coordinate procedures to switch to
an alternative relay service of another service provider.

Casting and Counting Votes

Members can participate in a vote by sending a
transaction from their member account or their
anonymous account registered for that vote. The
simplest form would be a transaction along with the
decision of the member as a parameter. The smart
contract invoked by the transaction would count
continuously how many times it received which
decision. However, this way everybody would see the
interim result of the vote. To prevent this, the votes
cast have to be encrypted and the key to decrypt them
should only be revealed when the counting starts.

Nobody knows the interim

results of a vote.

10

Since there is only a small number of possible decisions
for each resolution, e.g. yes, no and abstention or a list of
the election candidates, votes can be encoded in a very
simple way: we hash the numeric value representing
the voter’s decision salted with some keys to encrypt it.
To cast a vote, the voters only need to submit the hash
they computed. After reveling the salts, the decisions
can be determined by the smart contract with a few
hash operations. Each vote cast is double encrypted.
Voters generate the first encryption key. The second
encryption key is published by chairperson before
the vote starts. Voters combine the chairperson’s
encryption key with their own encryption key and salt
the hash of their decision with the combination of
both keys23. When the vote count phase starts, they
reveal their decryption key in a transaction sent from
the account they used to submit the vote. When the
time for revealing the voters’ decryption keys expires,
the chairperson publishes the second decryption
key. By combining the voters’ decryption key and the
chairperson’s decryption key, the smart contract can
figure out the decision that has been hashed for each
individual vote cast by comparing the hash for each
possible decision value with the hash submitted by
the voter during the vote.

The vote begins with a transaction of the chairperson
publishing the second encryption key. The casting is
concluded by another transaction of the chairperson,
followed by a standstill period. During the standstill
period, the user interface will disable sending new
transactions, but transactions already submitted will
have a chance to be confirmed. The standstill period
includes an appropriate number of block confirmations
to mitigate the risk of forks. After the end of the
standstill period, the smart contract will reject voter
transactions and allow the chairperson to publish the
second decryption key. By doing this, the chairperson
triggers the counting and the announcement of the
outcome by the smart contract.

All transactions submitted during a vote are preserved
in the blockchain and can be used to reproduce each
single step and the outcome of the vote24. An excerpt of
transaction hashes can be attached to the minutes of
the general meeting.

23 Voters compute the hash of their decision salted with vC, where v is a private key derived from the private key of their regular member account and C is a public key published by

 the chairperson. As soon as all voters have revealed their public key V (V=vG) and the chairperson has published the private key c (C=cG), the voters can compute the hash of the

 possible decision values salted with Vc for each published V.

24 The transactions remain in the blockchain forever, but in the course of the next vote the storage used during the previous one can be deleted and thus part of the transaction

 fees already paid reclaimed.

Enforcing Resolutions

If a new director was elected, replacing a retired member
of the board, the remaining directors must trigger a
smart contract to change the register of directors,
accordingly. If that smart contract was aware of the
passed resolutions, then it would only execute changes
compliant with them. To ensure this, all resolutions
which effect data represented on-chain, are coded in
form of a resolution contract. Such resolution contracts
can only be executed if a corresponding resolution
is passed. This is determined by the associated vote
contract after counting the votes cast. In the course
of their execution the resolution contracts perform the
foreseen changes, e.g. delete a member account from
and add another member account to the register of
directors. The resolution contracts are referenced in
the corresponding vote contracts, so that members
can review the code of the resolutions before they vote
in their favor or against them. The same principle can
be applied to the replacement of hashes of modified
user interface files and the update of rules in the smart
contracts governing the organization, e.g. the number
of directors or the quorum and majority needed for
passing certain resolutions.

The correct implementation

of resolutions is enforced

by smart contracts.

If the statutes require that passed resolutions need to
be put into effect within a certain period of time, the
user interface can notify members if directors haven’t
triggered the corresponding resolution contract once
a deadline has expired.

11

About the Author

Dr. Zoltan Fazekas has been working as a consultant,
speaker and author on blockchain and distributed
ledger technologies for many years. Since 2007 he is
heading the Austrian branch of iteratec GmbH. He is
the founder of the IT service provider‘s Blockchain
Labs, responsible for the blockchain education at FH
Technikum Wien, the largest technical university of
applied sciences in Austria, and an active member in
the blockchain working group of Austrian Standards
International.

Phone: +43 676 966 66 92

Email: Zoltan.Fazekas@iteratec.com

About iteratec

We are a technology company and support our
customers with tailor-made solutions for complex
problems – from creative brainwaves to the digital
product. We are passionate technologists and it’s our
goal to create added value for people with our high-
quality software. We develop individual software
systems, design large system landscapes and are
leaders in technology. Trend-setting companies
have been entrusting us with their challenging agile
projects for more than 20 years.

AUTHOR

Dr. Zoltan Fazekas

iteratec GmbH

St.-Martin-Straße 114

DE - 81669 Munich

+49 89 614551-0

info@iteratec.com

